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Necessary and sufficient condition that the limit
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Abstract

The pointwise limit S of a sequence of Stieltjes transforms ðSnÞ of real Borel probability
measures ðPnÞ is itself the Stieltjes transform of a Borel p.m. P if and only if iySðiyÞ-� 1 as

y-N; in which case Pn converges to P in distribution. Applications are given to several

problems in mathematical physics.
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1. Main theorem

The main goal of this note is to clear up some confusion in the literature about the
relationship between limits of Stieltjes transforms of probability distributions and
weak convergence, by characterizing which limits are themselves Stieltjes transforms
of probability measures (Theorem 1). As such, this result may be considered a gloss
on a theorem of Grommer and Hamburger [17], and also as a direct analog of Lévy’s
classical continuity theorem, complementing those in [6,7]. Since no reference is
known to the authors, a detailed proof is included for completeness.
Throughout this note, R and C denote the real and complex numbers, respectively;

p.m. and s.p.m. denote Borel probability measures, and sub-probability (mass p1)
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measures, respectively, on R; and s.p.m.’s ðmnÞ converge vaguely to a s.p.m. m [3, p.
80], if there exists a dense subset D of R such that for all a; bAD; aob;
mnðða; b�Þ-mðða; b�Þ: (Thus if ðmn), m are p.m.’s, vague convergence is equivalent to
convergence in distribution.)

Definition 1. The Stieltjes transform SP of a p.m. P is the function SP :
fImðzÞ40g-C given by

SPðzÞ ¼
Z

N

�N

1

w � z
dPðwÞ:

(Note: In some texts the Stieltjes transform is defined as the negative of the one given
here, cf. [5,16].)

A basic property of Stieltjes transforms, which has important applications in the
theory of moments, orthogonal polynomials, and mathematical physics (cf. [1,2]; [11,
pp. 48, 59]; [13–15]), is that they are a representing class for finite measures; [4,
Chapter 14] has an extensive table of Stieltjes transforms.

Lemma 1. For s.p.m.’s P and Q; P ¼ Q iff SP ¼ SQ:

Proof. Follows immediately from the Stieltjes transform inversion formula [1, p.
125]. &

Just as limits of characteristic functions of p.m.’s are in general not characteristic
functions, and limits of Hardy–Littlewood functions or expected-extrema functions
are not in general Hardy–Littlewood or expected-extrema functions [6], limits of
Stieltjes transforms of p.m.’s are not always Stieltjes transforms of p.m.’s, as the next
easy example shows.

Example 1. For n ¼ 1; 2;y; let Pn ¼ dðnÞ; the Dirac point mass at n: Then SPn
ðzÞ ¼

ðn � zÞ�1 for all n and all z with ImðzÞ40; so limn-N SPn
ðzÞ � 0; which is clearly not

the Stieltjes transform for any p.m. P (see Lemma 2).

On the other hand, just as with Lévy’s theorem, the limit of Stieltjes transforms is
itself a Stieltjes transform if and only if it satisfies one single universal limit
condition.

Theorem 1. Suppose that ðPnÞ are real Borel probability measures with Stieltjes

transforms ðSnÞ; respectively. If lim
n-N

SnðzÞ ¼ SðzÞ for all z with ImðzÞ40; then there

exists a Borel probability measure P with Stieltjes transform SP ¼ S if and only if

lim
y-N

iySðiyÞ ¼ �1 ð1Þ

in which case Pn-P in distribution.
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Corollary 1. If P; ðPnÞ are real Borel p.m.’s with Stieltjes transforms S; ðSnÞ;
respectively, then Pn-P in distribution if and only if Sn-S pointwise.

Proof. If Sn-S; then Pn-P in distribution by Theorem 1. Conversely, suppose that

Pn-P in distribution. Since fzðwÞ :¼ ðw � zÞ�1 is continuous and bounded in w for
fixed z in fImðzÞ40g; then ImðfzÞ and ReðfzÞ are also continuous and bounded, so
by the basic equivalence of convergence in distribution of p.m.’s and convergence of
integrals of bounded continuous functions [3, Theorem 4.4.2],R
ImðfzÞ dPn-

R
ImðfzÞ dP and

R
ReðfzÞ dPn-

R
ReðfzÞ dP; so SnðzÞ-SðzÞ: &

To facilitate the proof of Theorem 1, two additional lemmas are useful, which are
stated here for ease of reference.

Lemma 2. Let S : fImðzÞ40g-C be analytic. Then there exists a p.m. P with

SPðzÞ ¼ SðzÞ for all z with ImðzÞ40 if and only if (1) holds and

ImðSðzÞÞ40 for all z with ImðzÞ40: ð2Þ

Proof. By the classical Akhiezer–Krein theorem [1, p. 93], S ¼ SP for some finite
positive Borel measure P if and only if: S is analytic in fImðzÞ40g; S satisfies (2);
and

sup
yX1

jySðiyÞjoN: ð3Þ

Suppose P is a p.m. with S ¼ SP: The Akhiezer–Krein theorem implies that (2)
holds, and (1) follows immediately from the definition of SP: Conversely, suppose
that S is analytic and satisfies (1) and (2). Since ySðiyÞ is continuous in y; (1) easily
implies (3), so by the Akhiezer–Krein theorem again, there is a finite positive Borel
measure P with SP ¼ S: By the Dominated Convergence Theorem,
limy-N ½�iySPðiyÞ� ¼ massðPÞ; so (1) implies that P is a p.m. &

Lemma 3. Let F be a family of functions analytic in an open connected set D: If for

each compact set K in D there is a constant MðKÞ such that

jf ðzÞjpMðKÞ for all fAF and zAK ; ð4Þ

then every sequence in F has a subsequence that converges uniformly on compact

subsets of D to a function analytic in D:

Proof (Hille [8, Theorem 15.2.3]). &

Proof of Theorem 1. If lim Sn ¼ S ¼ SP for some p.m. P; then (1) follows by Lemma
2.
Conversely, suppose that S ¼ limn Sn satisfies (1). LetF ¼

S
fSng; and for KCD :

¼ fImðzÞ40g; let dðKÞ ¼ inffjjy � zjj : yAR; zAKg; the smallest distance from K to
the real line. Clearly 0odðKÞoN for all compact KCD; and MðKÞ ¼ 1=dðKÞ
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satisfies (4), so Lemma 3 implies that S ¼ lim Sn is analytic in D: By Lemma 2,
ImðSnðzÞÞ40 for all zAD; so ImðSðzÞÞX0 for all zAD: Suppose, by way of
contradiction to (2), that ImðSðz0ÞÞ ¼ 0 for some z0AD: Since S is analytic, ImðSÞ
and ReðSÞ are harmonic on D [9, p. 590]. By the maximum principle [9, p. 760], a
non-constant function which is harmonic in a simply connected bounded open set G

has neither a maximum nor a minimum in G; so since ImðSðzÞÞX0 on G for every
simply connected open bounded set G with z0AGCD; it follows (taking Gt ¼
fzAD : jjzjjotg; and letting t-N) that ImðSðzÞÞ � 0 for all zAD; which contradicts
(1). Thus (2) holds, and since S is analytic and (1) holds by assumption, Lemma 2
implies there exists a real Borel p.m. P with SP ¼ S:
For the convergence in distribution conclusion, suppose that Sn ¼ SPn

-SP

pointwise in D for p.m.’s ðPnÞ; P: By the Helly selection theorem [3, Theorem 4.3.3],
there exists a s.p.m. Q and a subsequence ðPnk

Þ of ðPnÞ such that Pnk
-Q vaguely.

Fix z in D; and let fz : R-C be given by fzðwÞ ¼ ðw � zÞ�1: Since fz is continuous in
w and vanishes at infinity, ReðfzÞ and ImðfzÞ are continuous and vanish at infinity, so
it follows by the equivalence of vague convergence of s.p.m.’s and convergence of
integrals of continuous functions which vanish at infinity [3, Theorem 4.4.1] that
SPnk

ðzÞ-SQðzÞ as k-N for all zAD: By hypothesis, SPn
-SP; so SP ¼ SQ; which by

Lemma 1 implies that P ¼ Q: Since every vaguely convergent subsequence of ðPnÞ
thus converges to P; this implies [3, Theorem 4.3.4] that Pn converges vaguely to P;
that is, since ðPnÞ and P are p.m.’s, Pn converges to P in distribution. &

A slight generalization of Theorem 1 will be needed for one of the examples below.

Theorem 2. Suppose that ðPnÞ are real Borel probability measures with Stieltjes

transforms ðSnÞ; respectively. Let KCfIm z40g be an infinite set with a limit point z0;
fIm z040g: If lim SnðzÞ ¼ SðzÞ for all zAK; then there exists a Borel probability

measure P with Stieljes transform SP ¼ S if and only if (1) holds, in which case Pn-P

in distribution.

Proof. It is enough to show that the pointwise convergence on K uniquely fixes the
limiting functions in Lemma 3. Suppose that f and g are two limiting functions
obtained from different subsequences of the family fSng and set h ¼ f � g: Then h is
analytic in D and zero on K : Thus h is identically zero on D [12, Theorem 10.18]
which shows that all the limit functions of Sn are again equal to S: The rest of the
proof follows as in Theorem 1. &

2. Applications

Theorem 1 can also be proved using the Grommer–Hamburger Theorem (e.g. [17,
p. 105]), which states (in the probability measure context) that if the pointwise limit
of Stieltjes transforms of a sequence of probability measures ðPnÞ exists, then the
limit is always the Stieltjes transform of a sub-probability Q; and Pn converges
vaguely to Q: There has been some confusion in the literature concerning the
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statement and applications of this theorem (e.g. [5,16]), where uniform convergence
on compact subsets was assumed to be sufficient to imply weak convergence.
However, the Stieltjes transforms in Example 1 converge uniformly (to the zero
function) on compacts, yet the measures do not converge weakly. As seen in
Theorems 1 and 2, however, uniform convergence on compacts is automatic, but
does not guarantee weak convergence. Convergence in distribution occurs if and
only if the limit condition (1) holds, and it is this observation that simplifies the
arguments in many applications, as is seen in the following three examples involving
weak convergence to uniform, Cauchy, and arcsin distributions, respectively.

Example 2. Let fLnðxÞ : n ¼ 1; 2;yg be the unique polynomials of degree n; and
positive leading coefficients, which satisfy the orthonormality relations

Z 1

�1
LnðxÞLmðxÞ

dx

2
¼ dn;m

(where dn;m is the Kronecker delta function dn;m ¼ 1 if n ¼ m; and ¼ 0 otherwise),

and let nn be the discrete probability measure with masses equal to one-half (to
normalize the weights) the Christoffel numbers, or the weights in the Gauss
quadrature formula, located at the zeroes of LnðxÞ; n ¼ 1; 2;y as given in [15, p. 48].
Using [15, Theorem 3.5.4], it follows that the Stieltjes transforms ðSnÞ of ðnnÞ satisfy

SnðzÞ-SðzÞ :¼ �1
2
lnððz þ 1Þ=ðz � 1ÞÞ for ze½�1; 1�;

so since limy-N iySðiyÞ ¼ �1; it follows from Theorem 1 that nn converges weakly to

the probability measure with Stieltjes transform S; which is easily seen to be
normalized Lebesgue measure dx=2 on ½�1; 1�: (This result is well known, cf. [15],
and may also be derived using moment methods and Weierstrass approximation.)

Example 3 (Van Assche [16, Theorem 4.17]). Let w : R-R be an even measurable

(weight) function which is positive a.s., and which satisfies limjxj-N

log wðxÞ
jxja ¼ �1 for

some a41; let fxj;n : j ¼ 1;y; n; n ¼ 1; 2;yg be the zeroes of the orthogonal

polynomials fpnðxÞ : n ¼ 1; 2;yg constructed via the weight function w; and let
fxan : n ¼ 1; 2;yg be the normalized sequence of purely atomic probability measures
with mass a�1

a ð 2laÞ
1=an�1þ1=a

1þx2
j;n

at xj;n; j ¼ 1;y; n; where la ¼ 2ffiffi
p

p Gððaþ1Þ=2Þ
Gða=2Þ : As in [16], it can

be shown that the Stieltjes transforms ðSnÞ of ðxanÞ converge pointwise to SðzÞ ¼
�ðz þ iÞ�1 for ImðzÞ40: Since S satisfies (1), Theorem 1 implies that xan converges

weakly to a Borel probability measure P; which is easily seen (from S) to be the

standard Cauchy distribution with density 1
p

1
1þx2

; �NoxoN: (Thus the argument

of uniform convergence on compact sets used in [16] is not necessary.)

Example 4 (Goh and Wimp [5, Theorem 1]; for a standard argument, see [10]). The
Tricomi–Carlitz polynomials satisfy the following recurrence formula:

ðn þ 1Þfnþ1ðxÞ � ðn þ aÞxfnðxÞ þ fn�1ðxÞ ¼ 0;
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with initial conditions f0ðxÞ ¼ 1 and f1ðxÞ ¼ ax: These polynomials satisfy the
orthogonality relations:Z

N

�N

fmðxÞfnðxÞ dcaðxÞ ¼ 2ea

ðn þ aÞn! dm;n;

where ca is a discrete mass measure with masses

ðk þ aÞk�1
e�k

k!
at x ¼ 7ðk þ aÞ�1=2; k ¼ 0; 1; 2y :

Goh and Wimp [5] compute the Stieltjes transforms associated with the scaled
Tricomi–Carlitz polynomials fnð zffiffi

n
p Þ;

SnðzÞ ¼
1

n
3
2

f 0
nð zffiffi

n
p Þ

fnð zffiffi
n

p Þ ¼
Z

N

�N

dnnðxÞ
x � z

;

where nn is the discrete uniform probability measure with mass 1
n
at each zero of

fnð zffiffi
n

p Þ; and conclude, using the saddle point method, that

SnðzÞ-SðzÞ ¼ � 1

z
þ 2

z3
ðzbðzÞ þ logð1� zbðzÞÞÞ;

for zANe; where: Ne ¼ fz : jz � i
2
jpeg; e is sufficiently small; and zbðzÞ ¼ z z�

ffiffiffiffiffiffiffiffi
z2�4

p

2
:

(Here the branch of the square root used is such that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 4

p
is analytic for

zAC\½�2; 2� and positive for z42:) The function SðzÞ is the Stieltjes transform of the
probability measure (e.g. [5,10, p. 194])

dnðxÞ
dx

¼
1
pð

4 arcsinðjxj
2
Þ

jxj3 �
ffiffiffiffiffiffiffiffi
4�x2

p

x2
Þ; �2oxo2

2

jxj3; jxjX2:

8><
>:

By Theorem 2 it follows that nn-n weakly. (The argument of uniform convergence
on compacts used in [5] is not needed.)
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[6] T. Hill, U. Krengel, Lévy-like continuity theorems for convergence in distribution, in: Proceedings of

the Göttingen Academy of Sciences, 2001, Nachr. Akad. Wiss. Göttingen 1 (2002) 1–21.

[7] T. Hill, M. Spruill, On the relationship between convergence in distribution and convergence of

expected extremes, Proc. Amer. Math. Soc. 121 (1994) 1235–1243.

[8] E. Hille, Analytic Function Theory, Vol. II, Chelsea, New York, 1959.

[9] E. Kreyszig, Advanced Engineering Mathematics, Wiley, New York, 1962.

[10] A. Kuijlaars, W. Van Assche, The asymptotic zero distribution of orthogonal polynomials with

varying recurrence coefficients, J. Approx. Theory 99 (1999) 167–197.

[11] B.M. Levitan, I.S. Sargsjan, Sturm–Liouville and Dirac Operators, Kluwer Academic, Boston, 1991.

[12] W. Rudin, Real and Complex Analysis, Tata McGraw-Hill, New Dehli, 1974.

[13] J. Shohat, J. Tamarkin, The problem of moments, Amer. Math. Soc. Surveys 1 (1950). Erratum 128

(2000) 625–626.

[14] B. Simon, The classical moment problem as a self-adjoint finite difference operator, Adv. in Math.

137 (1998) 82–203.
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